研究報告書
一般課題：A
（平成27年度）

平成29年4月27日

公益財団法人 がん研究振興財団
理事長 堀 田 知 光 殿

研究施設 山口大学大学院医学系研究科
放射線治療学
住所 山口県宇部市南小串1-1-1

研究者氏名 椎木 健裕

（研究課題）

四次元動体追跡治療のための新型動体追跡装置による透視被ばく線量計算システムの開発

平成28年2月19日交付成金交付のあった標記一般課題：Aについて研究が終了致しましたのでご報告いたします。
平成27年度がん研究振興財団 研究成果報告書

研究課題：一般課題 A
研究課題名：四次元動体追跡治療のための新型動体追跡装置による透視被ばく線量計算システムの開発
研究施設：山口大学大学院医学系研究科
研究者：椎木 健裕

1. 研究目的
近年、放射線治療において、呼吸運動や蠕動運動等の動きを伴う部位への治療は問題となる。ICRU(International Commission on Radiation Units and Measurements)の定義に従うと、呼吸運動や蠕動運動により腫瘍が動く範囲を全て含んで照射する方法が一般的であるが、照射範囲が拡大してしまう、腫瘍周辺の正常組織の副作用が増大してしまう問題がある。

さらに、コンピュータの助けを借りて、多広径で形成された複数のビームを組み合わせることで放射線に強弱をつけ、正常組織への線量低減を図ながら、腫瘍に集中的に照射できる放射線治療技術である精度変調放射線治療を、呼吸性移動を伴う部位へ施行すると、予定とは全く異なる放射線量を投与することになり、腫瘍の制御率の低下や正常組織に対する副作用が増加する問題がある。

当院では、呼吸運動や蠕動運動などの動きを伴う部位への対策として、新型動体追跡装置を導入した。動体追跡装置は、腫瘍近傍に設置された金属マーカーを、透視画像を用いてリアルタイムに三次元的に認識する装置である。我々は、超高速に放射線の照射を可能とする医療用加速器と動体追跡装置を組み合わせることで、金属マーカーが特定の位置に来た時のみ超短線量率で放射線照射を行う超短線量率四次元動体追跡照射の臨床応用を目指している。

しかし、超短線量率四次元動体追跡照射を高精度に安全に臨床応用するための品質保証法が確立されており、特に、放射線治療中、腫瘍近傍の線量管理を認識するための透視被ばく線量の管理は、医療被ばくとなるため、十分に行われていないのが現状である。医療被ばくは、診断・治療を受ける際に被ばくした個人が医療行為から直接受益を受けるので、線量管理をしていない。しかし、被ばく線量の増加は、二次発がんのリスクを上昇させるため、その管理は非常に重要となる。

そこで、我々は、新型動体追跡装置による透視被ばく線量を、患者皮膚表面でなく患者体内で評価可能とする被ばく線量計算システムを構築し、患者個別による体内にお
げる被ばく線量を管理し、動体追跡装置による透視被ばく線量管理の標準化を目的としている。

2. 研究方法
1. 新型動体追跡装置の透視 X 線による被ばく線量(深部線量百分率、軸外線量比)を、電離箱線量計を用いて測定する。測定に必要な専用固定具を開発する。
2. Monte Carlo simulation(MC)を用いて、新型動体追跡装置のジオメトリー構造を作成する。さらに、1で実測したデータを基に、新型動体追跡装置のモデリングを行う。
3. 新型動体追跡装置を用いて四次元動体追跡照査を実施した際に作成されるログファイルより、透視時間を算出可能なソフトウェアを開発する。
4. 2でモデリングされた MC と 3で算出された透視時間を用い、実際に治療が行われた患者の CT を用いて、動体追跡装置からの透視被ばく線量を算出する。

3. 研究結果
MC を用いた新型動体追跡装置のモデリングは、測定した深部線量百分率および軸外線量比に対して 2%以内で一致し、高精度にモデリングすることができた。
その結果を基に、実際に四次元動体追跡治療を行った患者に対して、動体追跡時に作成されるログファイルおよび CT 画像を用いた被ばく線量計算を行うことを可能とし、CT 画像上で被ばく線量を視覚化することに成功した。また、患者体内における各臓器の被ばく線量を Dose Volume Histogram を用いて定量解析することを可能とした。今後は、さらに改良を進め、医療被ばく管理の標準化を行っていく予定である。

学会発表

謝辞

本研究の遂行にあたり研究助成のご支援を賜りました公益財団法人 がん研究振興財団に深く感謝致します。