研究成果概要

研究代表者：金沢大学がん進展制御研究所腫瘍内科　山田忠明
研究課題名：肺がんにおけるMEK阻害薬耐性機構の解明とその克服を目指した研究

研究成果

【研究背景】非小細胞肺がんに対するEGFRやALKを標的とした薬剤開発は、良好な治療成績が示されている。その一方、多くの肺がん患者はいまだ十分な治療効果が得られず、新たな薬剤感受性分子の同定や治療法の開発が望まれる。がん抑制遺伝子LKB1は、肺がんの約30%に遺伝子変異が存在し、がん代謝の主要な制御分子として近年、注目を集めている。我々はLKB1活性と有意な相関を示す16遺伝子発現パネルを構築し、その有用性を報告した。本研究は、MEK阻害薬感受性を規定するLKB1活性の分子機構に着目し、その治療法について検討した。

【研究方法】既存のゲノムデータベースThe Genomics of Drug Sensitivity in Cancer project(GDSC)、Cancer Cell Line Encyclopedia(CCLE)を利用し、LKB1活性を評価しろうの16遺伝子発現パネルとGDSC化合物ライブラリーにある138種類の薬剤感受性について検討した。23株のヒト肺がん細胞株を用いてLKB1遺伝子の遺伝子操作を行い、LKB1活性とMEK阻害薬感受性の相関性について評価した。LKB1により規定されるMEK阻害薬耐性に対する治療について検討した。

【研究結果】GDSC、CCLEを用いた検討で、LKB1活性は複数のMEK阻害薬感受性と相関し、KRAS/BRAF変異から独立した薬剤感受性規定因子であった。ヒト肺がん細胞23株のうちLKB1活性細胞は未熟細胞に比べ、有意にMEK阻害薬の感受性が低下していた。in vitroおよびin vivoにおける分子生物学的検討において、LKB1活性化はAKT-FOXO3aシグナルを介してMEK阻害薬の感受性低下に関与していた。FOXO3a遺伝子制御は、LKB1失活によるMEK阻害薬の効果を減弱させた。FOXOシグナルはMEK阻害薬にHDAC阻害薬を併用することで活性化し、動物モデルにおいて併用治療効果を示した。

【結論】非小細胞肺がんにおいてFOXO3aを介したLKB1シグナル活性はMEK阻害薬の新たな効果予測因子として有望である。HDAC阻害薬との併用はMEK阻害薬耐性を克服する可能性がある。

研究成果の発表状況

学術論文：投稿準備中
学会発表(国内、国際)：
1. Tadaaki Yamada, Jacob M. Kaufman, Joseph M. Amann, David P. Carbone.
LKB1 loss is a novel determinant of MEK inhibitor sensitivity by regulating activation of AKT-FOXO3 pathway.

2. 山田 忠明, 矢野 聖二, David P. Carbone. 非小細胞肺癌におけるLKB1活性を基盤とした薬剤感受性機構の解明と治療法開発第57回日本肺癌学会総会, 2016年12月, 福岡.

3. Tadaaki Yamada, Jacob M. Kaufman, Joseph M. Amann, David P. Carbone. LKB1 loss is a novel determinant of MEK inhibitor sensitivity by regulating activation of AKT-FOXO3 pathway. 17th World Conference on Lung Cancer, 2017-12 Vienna